

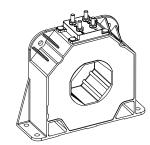
Current Transducer LF 2005-S/SP37

For the electronic measurement of currents: DC, AC, pulsed..., with galvanic isolation between the primary circuit and the secondary circuit.

Electrical data

I _{PN} I _{PM}	Primary nominal current rms Primary current, measuring range @ ± 24 V		2000 0 ± 3000		A A
R _M	Measuring resistance		$\mathbf{R}_{\mathrm{M}\mathrm{min}}$	$\mathbf{R}_{M\;max}$	
	with ± 15 V	@ \pm 2000 A _{max}	0	7	Ω
		@ ± 2500 A _{max}	0	0.5	Ω
	with ± 24 V	@ ± 2000 A _{max}	3	28	Ω
		@ ± 3000 A _{max}	3	10	Ω
I _{SN}	Secondary nominal curre		400		mΑ
K _N	Conversion ratio		1:500	00	
V _c	Supply voltage (± 5 %)		± 15	24	V
I _C	Current consumption		33 (@	± 24 V) +	$\mathbf{I}_{\mathrm{S}} \; \mathrm{mA}$

Accuracy - Dynamic performance data


$\mathbf{X}_{\scriptscriptstyle{\mathrm{G}}}$	Overall accuracy @ I _{PN} , T _A = 25°C	± 0.5	%
$\mathbf{\epsilon}_{_{\mathbf{i}}}$	Linearity error	< 0.1	%
-		Max	
I _o	Offset current @ $I_P = 0$, $T_A = 25^{\circ}C$	± 0.5	mA
I _{OT}	Temperature variation of I _o - 40°C + 85°C	± 0.8	mA
t,	Response time 1) to 90 % of I _{PN} step	< 1	μs
di/dt	di/dt accurately followed	> 50	A/µs
BW	Frequency bandwidth (- 1 dB)	DC 100	kHz

General data

T_A	Ambient operating temperature	- 40 + 85	°C
T _s	Ambient storage temperature	- 45 + 90	°C
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 85°C	25	Ω
m	Mass	2.5	kg
	Standard	EN 50155: 2001	

Note: 1) With a di/dt of 100 A/µs.

$I_{DN} = 2000 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Isolated plastic case recognized according to UL 94-V0.

Special features

- **V**_d = 12 kV
- T_A° = -40°C .. + 85°C
- Connection to secondary on UNC 10 threaded studs
- Labelling with customer number EMD 40125221.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- Single or three phase inverter
- · Propulsion and braking chopper
- Propulsion converter
- Auxiliary converter
- Battery charger.

Application Domain

Traction.

Current Transducer LF 2005-S/SP37

Isolation characteristics				
\mathbf{V}_{d}	Rms voltage for AC insulation test, 50 Hz, 1 min	12 1)	kV	
		1 ²⁾	kV	
		Min		
dCp	Creepage distance	55.4	mm	
dCI	Clearance	53.2	mm	
CTI	Comparative Tracking Index (group I)	600		

Notes:

Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

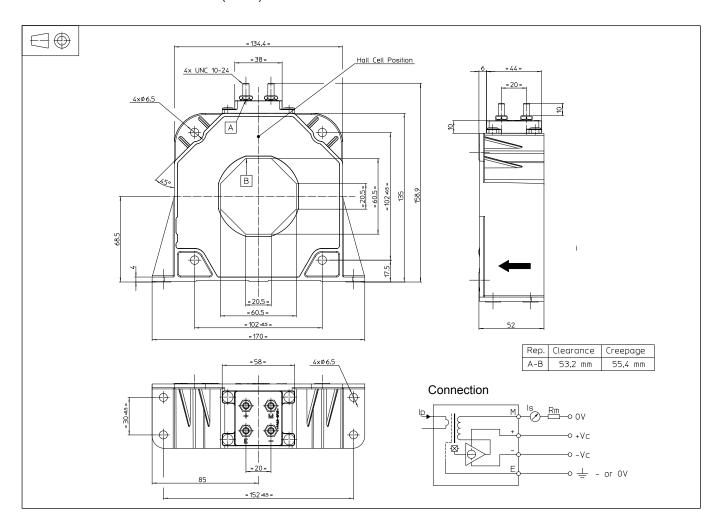
Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.


Main supply must be able to be disconnected.

¹⁾ Between primary and secondary

²⁾ Between secondary and shield.

Dimensions LF 2005-S/SP37 (in mm)

Mechanical characteristics

General tolerance ± 1 mm

Transducer fastening
 Vertical position
 4 holes Ø 6.5 mm
 4 M6 steel screws

Recommended fastening torque 5.5 Nm

Or

Horizontal position 4 holes Ø 6.5 mm

4 M6 steel screws

Recommended fastening torque 5.5 Nm

Primary through-hole
 Connection of secondary
 Recommended fastening torque
 2.2 Nm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.